Pseudosiderastrea tayami | UAE National Red List of Marine Species: Reef-building corals, cartilaginous fishes and select bony fishes

Taxa
Pseudosiderastrea tayami | Yabe & Sugiyama, 1935
Location
Countries in Assessment
United Arab Emirates
Country ISO code(s)
ARE
Does the assessment cover a marine EEZ area(s)?
Off
Scope (Assessment)
National
Taxon
Taxonomic Group
Invertebrates
Taxonomic Group Level 2
Corals
Assessed taxon level
Species
Taxonomic Notes
Attention RLU: Please change the species name fro m Pseudosiderastrea tayami to Pseudosiderastrea tayamai and the family from Siderastreidae to Rhizangiidae . For reference please see WoRMS: <a href=""http://www.marinespecies.org/aphia.php?p=taxdetails&id=207272"">http://www.marinespecies.org/aphia.php?p=taxdetails&id=207272</a>. C. Linardich 19Jan2022 This species is properly known as Pseudosiderastrea tayamai (Yabe and Sugiyama 1935, Hoeksema and Cairns 2019).
Taxon distribution as listed in assessment
This species is reported from throughout the Gulf (Veron 2000), including in the UAE (Riegl 1999, Riegl et al. 2001, Burt et al. 2008). Unidentified species of Pseudosiderastrea were reported from UAE waters in the Sea of Oman (Foster and Foster 2013). However, examination of specimens of Pseudosiderastrea and Anomastraea, which have historically been confused, suggests that while Anomastraea has been extensively collected in the Gulf, no substantiated records of Pseudosiderastrea in the Gulf are known (Riegl et al. 2012). Therefore, the presence of this species in UAE waters is possible but unconfirmed. Elsewhere, it is widely distributed in the Indo-West Pacific.
Habitats and Ecology
Ecological system type
Terrestrial system
No
Freshwater system
No
Marine system
Yes
Habitat
Habitat details as listed in assessment
It is found attached to bare rock as well as on coral reefs, generally to depths of 20 m.The age of first maturity of most reef building corals is typically three to eight years (Wallace 1999) and therefore we assume that average age of mature individuals is greater than eight years. Total longevity is not known, but likely to be more than ten years. Furthermore, based on average sizes and growth rates, we assume that average generation length is 10 years, unless otherwise stated. Therefore, any population decline rates for the Red List assessment are measured over at least 30 years.
Is there a map available in assessment?
Yes
Assessed status
Asessment status in full
Data Deficient
Assessment status abreviation
DD
Assessment rationale/justification
This species has been reported from localities along both coasts of the UAE, but its distribution has been questioned. Species-specific information is limited. The most important known threat is extensive reduction of coral reef habitat due to a combination of threats. As the distribution of this species in the UAE is highly uncertain, it is listed as Data Deficient. However, given the extensive threats to corals in UAE, and their resultant decline, if this species is determined to occur in the UAE, a reassessment would be necessary. No regional adjustment is made to the Data Deficient listing.
About the assessment
Assessment year
2019
Assessors/contributors/reviewers listed
UAE National Red List Workshop
Affliation of assessor(s)/contributors/reviewers listed on assessment
Government
IGO
Assessor affiliation specific
Government|IGO
Criteria system
Criteria system specifics
IUCN v3.1
Criteria system used
IUCN
Criteria Citation
IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1, Second edition. IUCN, Gland, Switzerland and Cambridge, UK. iv + 32pp pp. And IUCN. 2012. Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: Version 4.0. Gland, Switzerland and Cambridge, UK: IUCN. iii + 41pp.
Endemism
Endemic to region
Not_assigned
Endemism Notes
Is an endemic?: Not_assigned
Conservation
Threats listed in assessment
In the Gulf, the major threats to corals include extreme and increasing temperature variability due to climate change, as well as direct destruction and increased turbidity caused by coastal construction (Riegl et al. 2012). Although bleaching thresholds in the Gulf are the highest recorded in the world (Riegl et al. 2012), bleaching events in the UAE have resulted in significant mortality (such as in 1996-1998, 2002, 2010 and 2017) and slow recovery (Burt et al. 2008). In Abu Dhabi, the most recent coral bleaching event resulted in nearly 95% of corals bleaching, and by April 2018, mortality reached 73% (Burt et al. 2019). This event resulted in mass mortality of even the more stress-tolerant corals such as poritids and merulinids (Burt et al. 2019). Coastal development, particularly large-scale offshore real estate developments and sedimentation associated with reclamation, has directly buried coral reefs in the Gulf (Burt et al. 2008, 2013; Burt 2014; Burt and Bartholomew 2019). In the Sea of Oman, UAE reefs have experienced major hurricanes and harmful algal blooms that caused high coral mortality and shifted community structure (Bauman et al. 2010, Foster et al. 2011).Globally, the major threat to corals is global climate change, in particular, temperature extremes leading to bleaching and increased susceptibility to disease, increased severity of ENSO events and storms, and ocean acidification. In addition to global climate change, corals are also threatened by disease and a number of localized threats. Coral disease has emerged as a serious threat to coral reefs worldwide and is a major cause of reef deterioration (Weil 2006). The numbers of diseases and coral species affected, as well as the distribution of diseases have all increased dramatically within the last decade (Porter et al. 2001, Green and Bruckner 2000, Sutherland et al. 2004, Weil 2004). Coral disease epizootics have resulted in significant losses of coral cover and were implicated in the dramatic decline of acroporids in the Florida Keys (Aronson and Precht 2001, Porter et al. 2001, Patterson et al. 2002). In the Indo-Pacific, disease is also on the rise with disease outbreaks recently reported from the Great Barrier Reef (Willis et al. 2004), Marshall Islands (Jacobson 2006) and the northwestern Hawaiian Islands (Aeby et al. 2006). Increased coral disease levels on the Great Barrier Reef were correlated with increased ocean temperatures (Willis et al. 2004) supporting the prediction that disease levels will be increasing with higher sea surface temperatures. Escalating anthropogenic stressors combined with the threats associated with global climate change of increases in coral disease, frequency and duration of coral bleaching and ocean acidification place coral reefs in the Indo-Pacific at high risk of collapse.Localized threats to corals include fisheries, human development (industry, settlement, tourism, and transportation), changes in native species dynamics (competitors, predators, pathogens and parasites), invasive species (competitors, predators, pathogens and parasites), dynamite fishing, chemical fishing, pollution from agriculture and industry, domestic pollution, sedimentation, and human recreation and tourism activities.
Conservation Measures

Conservation measures:
Conservation measures notes:
Required conservation measures:

Scientific Name Kingdom Phylum Class Order Family Genus
Pseudosiderastrea tayami Animalia Cnidaria Anthozoa Scleractinia Siderastreidae Pseudosiderastrea